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Abstract. The multidimensional space-time with (D − 4) compact extra space dimensions and SM fields
confined on a four-dimensional brane is considered. The elastic scattering amplitude of two particles
interacting by gravitational forces is calculated at superplanckian energies. Particular attention is paid
to a proper account of zero (massless) graviton mode. The renormalized Born pole is reproduced in the
eikonal amplitude which makes a leading contribution at small momentum transfers. This singular part
of the amplitude coincides with well-known D-dimensional amplitude taken at D → 4. The expression for
the contribution from massive graviton modes to the eikonal is derived, and its asymptotics in the impact
parameter is calculated. Our formula gives the correct four-dimensional expression at Rc → 0, where Rc

is the radius of the higher dimensions. The results are also compared with those obtained previously for
the scattering of the bulk fields in flat extra dimensions.

1 Introduction

In the four-dimensional space-time gravity is very weak as
compared with the interactions of the standard model (SM)
fields. Namely, the Newton constant is equal to GN = M−2

Pl ,
where MPl = 1.2 · 1019 GeV is the Planck mass, while the
electroweak scale is about mEW ∼ 103 GeV. In order to
explain the huge ratio of the two physical scales in nature,
MPl/mEW, a scheme with additional space dimensions with
a flat metric has been proposed [1] (in what follows, referred
to as the ADD model). All d extra dimensions are compact
with the radius Rc. In other words, the space-time is R4 ×
Md, where Md is a d-dimensional manifold volume Rd

c . If
R−1

c � mEW, a gravitational potential will get negligible
corrections at distances r � Rc.

Let MD be the fundamental Planck scale in D-dimen-
sional theory (D = 4 + d). Then it can be shown [1] that

M2
Pl = Rd

cM
2+d
D , (1)

or, equivalently,

Rc = 2 · 1031/d−17
(

1 TeV
MD

)1+2/d

cm . (2)

One can get MD ∼ 1 TeV, if the compactification radius Rc
is large enough. The radius Rc depends on d and it ranges
from 1 mm to 1 fm if d runs from 2 to 6. Since Rc � m−1

EW,
all standard model (SM) gauge and matter fields are to be
confined to a three-dimensional brane embedded into the
(3+d)-dimensional space (gravity alone lives in the bulk).
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From the point of view of the four-dimensional space-
time, there arises a Kaluza–Klein (KK) tower of massive
graviton modes, G

(n)
µν , with masses

mn =

√
n2

Rc
, n2 = n2

1 + n2
2 + . . . + n2

d , (3)

where n defines the KK excitation level. So, a mass splitting
is ∆m ∼ R−1

c and we have an almost continuous spectrum
of gravitons.

The interaction of the gravitons with the SM fields is
described by the Lagrangian [1]

L = − 1
M̄Pl

G(n)
µν Tµν , (4)

where µ, ν = 0, 1, 2, 3 and M̄Pl = MPl/
√

8π is the reduced
Planck mass. One can conclude from (4) that the coupling
of both massless and massive graviton is universal and
very small (∼ 1/M̄Pl). However, the multiplicity of the
KK states produced in high-energy collisions is huge and
it is equal to (

√
sRc)d, where

√
s is the collision energy. The

typical cross section for a process involving the production
of the KK graviton excitations with masses mn ≤ √

s is
suppressed only by the scale MD:

σKK ∼ sd/2

Md+2
D

. (5)

So, the ADD model can be tested at future hadronic col-
liders and at e+e− linear colliders in the range of TeV
energies (the Planck regime). There are a lot of papers on
collider phenomenology within the framework of the extra
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dimensions. The interested reader can find references in
the reviews in [2].

Collisions in the transplanckian regime (
√

s � MD)
were considered in a variety of papers in the framework
of string theory [3], in the eikonal approximation of the
reggeized graviton exchange [4], as well as in different four-
dimensional approaches [5, 6]. The equivalence of various
schemes has been demonstrated in [7]. Note that in [3,4] a
collision of the bulk fields in D-dimensional flat space-time
was considered.

In [8] an estimate of the high-energy gravitational cross
sections of hadrons has been made. The contribution from
the KK excitations of the graviton changes the t-channel
propagator (−t)−1 by

1
−t

→
∑

n2
1+...n2

d�0

1

−t +
d∑

i=1

n2
i

R2
c

. (6)

It was argued in [8], that the range n � nmax ∼ MsRc,
where Ms is a quantum gravity (string) scale, makes a
dominant contribution to the hadronic cross sections. Using
the replacement (d > 2)

∑
n2

1+...n2
d�0

1

−t +
d∑

i=1

n2
i

R2
c

→ R2
c

∫
ddΩ

nmax∫
0

dn nd−3 , (7)

the following results for the total cross section have been
obtained (after unitarization):

σtot(s) � 4πs

M4
D

. (8)

However, the papers of [8] have unjustified approxi-
mations, as it was pointed out in [9]. In particular, the
presence of the massless exchange quantum (zero mode
of the graviton) should result in infinite elastic and total
hadronic cross sections, contrary to the equality (8). For
strong interactions without gravitational forces, the upper
(Froissart) bound for σtot(s) is modified by an additive
term (πrc/mπ) ln s, if the extra dimensions are compacti-
fied onto a circle with the radius rc [10].

Recently, results on a collision of brane particles, which
interact by graviton forces in the ADD model with the
compact extra dimensions, have been presented in [11,12].
These papers consider the approximation that the size of
the extra dimensions, Rc, is effectively infinite. In [13] the
results from [12] were applied for calculations of di-jet dif-
ferential cross sections at the LHC energy in a kinematical
region where gravity dominates.

In the present paper we will be interested in the effects
of finite Rc. We have to go beyond the approximation
used in [8, 12]. In particular, the massless graviton mode
should be properly taken into account. That is why, in the
present paper, we calculate the scattering amplitude for two
particles confined on the brane, by separating the massless
graviton contribution from massive graviton effects from
the very beginning.

In the next section we review briefly the results on the
scattering in both D flat dimensions [3, 4] and four flat
dimensions [5, 6]. In the beginning of Sect. 3 we consider
the approach proposed in [12]. The rest of Sect. 3 is devoted
to calculations of the eikonal amplitude. In the last section
we discuss our results and compare them with the results
obtained by other authors mentioned in this paper. In the
appendix technical details of our calculations are presented.

2 Transplanckian collision in the bulk

In this section we recall some results on transplanckian col-
lisions in models with extra dimensions. As was mentioned
in the Introduction, the transplanckian regime has been
analyzed in detail in the string theory. String theory has
the fundamental classical constant α′, its inverse being the
string tension. Since the leading graviton trajectory is at
α(t) = 2+ (α′/2)t, one expects that at high s graviton ex-
change will dominate the light-string scattering amplitude
for any number of loops.

The transplanckian regime is characterized by a strong
effective coupling αG(s) = GDs (GD = M

−(2+d)
D is the

D-dimensional Newton constant). In [3] the four-string
scattering amplitude was calculated in the kinematical re-
gion

α′s � (MD

√
α)d+2 � 1 ,

|t| � α′−1 , α′|t| � (α′Rc)−2 . (9)

The inequalities (9) mean that the tree amplitude is large
(GDsα′−d/2 � 1), while the loop expansion parameter,
GDα′−(1+d/2), is small. Due to the second restriction on t
in (9), compactified momenta are not noticeably excited. In
terms of the impact parameter b, the limitations look like

b > λs , b > RG(s) , (10)

where λs =
√

2α′� is a fundamental quantum length in the
string theory and RG(s) � (2GD

√
s)1/(d+1) is a gravita-

tional radius.
The leading contribution to the scattering amplitude

at the impact parameter b has all powers of αG(s) and it
is the same in all approaches at b � λPl, RG(s), where
λPl = (�GD)1/(d+2) is the Planck length.

The amplitude is of a classical (eikonal) form. For large
b the eikonal function is given by [3]

χ(b, s) ≡ χACV(b, s) (11)

�
(

b̃c

b

)d

+ iπ2 GDsα′−d/2

(π ln s)d/2+1 exp
(

− b2

4α′ ln s

)
,

where b̃c =
[
αG(s)2π−d/2Γ (d/2)

]1/d
. As one can see,

χACV(b, s) has both a real and an imaginary part. The
former has a power-like behavior in b, while the latter de-
creases exponentially at b � 2α′ ln s. Correspondingly, at
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small t (namely, at |t| � αG(s)−2/d) the amplitude has
the asymptotics

Aeik
ACV(s, t) � AB(s, t) (12)

+ i const
(16παG(s))2s

d(d − 2)

[
−|t|d/2−1 + (16πGDs)2/d−1

]
.

Here

AB(s, t) =
8παG(s)s

−t
(13)

is the Born amplitude. Thus, the Born term dominates at
small t.

For large t (|t| � b̃−2
c ) the amplitude has the following

behavior [3]:

Aeik
ACV(s, t) (14)

∼ 8παG(s)s
−t

exp(iφD)
(

4π
(
b̃c
√

|t|
)d
)−d/2(d+1)

.

The D-dimensional phase

φD =
d + 1

d

(
GDs 2π−d/2Γ (1 + d/2)|t|d/2

)1/(d+1)
(15)

has a pole at D = 4. So, the limit D → 4 is completely
non-perturbative due to the divergent (Coulomb) phase.

In [4] the same result (14) was obtained by summing
multiple reggeized graviton exchange in the eikonal ap-
proximation. Although Regge behavior is present at each
order, it is absent in the final result (14). It is important
to note that the magnitude of the scattering amplitude is
defined by a single non-reggeized graviton exchange (in full
analogy with the case of Coulomb scattering dominated
by a single photon exchange).

The scattering amplitude may be directly calculated in
four dimensions [5, 6] (see also [14]):

Aeik
HVV(s, t) = AB(s, t)

Γ (1 − iαG(s))
Γ (1 + iαG(s))

(
4µ2

IR

−t

)−iαG(s)

,

(16)
or it can be obtained from the D-dimensional expression
by taking the limit D → 4 [3,4]. The quantity µIR in (16)
is an infrared cutoff. It arises in the limit D → 4, when the
pole (D −4)−1 is interpreted as the logarithm of µIR [4]. If
the amplitude is calculated as a sum of soft gravitons with
a small mass mgrav, this cutoff is related to the graviton
mass, µIR = (1/2)mgraveγ, where γ is the Euler constant.

Let us note that the eikonal amplitude in quantum
electrodynamics can be obtained from (16) by the simple
replacement −αG(s) → αem = e1e2/4π, where e1,2 are the
electric charges of colliding massless charged particles [15].
In such a case, µIR is proportional to a regulating photon
“mass” [15].

At large z, | arg z| < π, the Γ -function has an asymp-
totics Γ (z) =

√
2πe−ze(z−1/2) ln z

[
1 + O(z−1)

]
[16]. Then

we obtain from (16) that in four dimensions (see also [4])

Aeik(s, t)
∣∣∣
αG(s)�1

� −AB(s, t)
(

4µ2
IR

−t

)−iαG(s)

× i exp [−i2αG(s)(lnαG(s) − 1)] . (17)

In the next section we will consider the case when col-
liding particles are confined to the brane, with the grav-
ity living in the bulk. Another difference will be that the
compactified momenta become essential, contrary to the
approach considered in this section.

3 Transplanckian collision on the brane

In the ADD model, all SM fields live on the (1 + 3)-
dimensional brane embedded in the D-dimensional space-
time. Thus, their collisions are also confined to the brane.
In particular, the impact parameter space is two-fold. On
the other hand, in the transplanckian region, where the
collision energy

√
s is much larger than the fundamental

gravity scale MD, but the momentum transfer t is small,
the scattering of four-dimensional particles is dominated
by the exchange of D-dimensional gravitons.

The (elastic) scattering of two (different) massless par-
ticles living on the brane in the kinematical region

√
s � MD , s � −t (18)

was first considered in [11] and analyzed in more detail
in [12, 13]. The ladder diagrams contributing to a non-
reggeized graviton exchange in the t-channel were summed
in the eikonal approximation [12]. From the point of view
of a four-dimensional observer, the massless bulk graviton
is represented by a tower of massive gravitons (3). Since the
higher space dimensions are compactified with the radius
Rc, one has a sum in the (quantized) momentum transfer
in the extra dimensions q

(n)
⊥ = n/Rc instead of an integral

in dD−4q⊥. The Born amplitude is, therefore, of the form

AB(s, t) = GNs2
∑

n2
1+...n2

d�0

1

−t +
d∑

i=1

n2
i

R2
c

. (19)

Here and in what follows the reduced gravitational con-
stant, ḠN = M̄−2

Pl is always assumed; see (4). For simplicity,
we will write GN instead of ḠN (and, correspondingly, GD

instead of ḠD). Thus, to compare our results with those
of [3–6], one will have to use the substitution GN → 8πGN.

In [12] the following replacement was made by assuming
that Rc is large (compare with (7)):

∑
n2

1+...n2
d�0

1

−t +
d∑

i=1

n2
i

R2
c

→
∫

ddΩ

∞∫
0

dlld−1 1

−t +
l2

R2
c

.

(20)
As a result, it was obtained that

AB
GRW(s, t) = πd/2Γ (1 − d/2)

(
s

M2
D

)2( −t

M2
D

)d/2−1

.

(21)
At one- and higher-loop levels it is a ladder diagram that

makes the leading contribution to the amplitude. The sum
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of all such diagrams results in the eikonal representation
for the amplitude [12]:

Aeik
GRW(s, t) = −2is

∫
d2b⊥eiq⊥b⊥

(
eiχGRW(b⊥) − 1

)
,

(22)
with the eikonal given by

χGRW(b⊥) =
1
2s

∫
d2q⊥
(2π)2

e−iq⊥b⊥AB(s, q2
⊥) . (23)

After a substitution of the Born amplitude (21) in (23),
one gets [12]

χGRW(b) =
(

bc

b

)d

, (24)

where

bc =

[
s (4π)d/2−1Γ (d/2)

2Md+2
D

]1/d

≡ 2
√

πRc

[
GNs Γ (d/2)

8π

]1/d

.

(25)
At d → 0, the eikonal χGRW(b), see (24), has the expansion

χGRW(b)
∣∣∣
d→0

� GNs

8π

[
2
d

+ ln
(

2Rc

b

)2

+ Ψ(1) + ln π

]
,

(26)
where Ψ(z) is the Ψ -function [16].

At all intermediate steps (20)– (23), the number of extra
dimensions d was regarded as a (non-integer) parameter.
The final expression (24) has no divergences in d at d >
0, although the Born amplitude has simple poles at d =
2, 4, . . . (because of the Γ -function in (21)).

In [13] the conclusion was made that “even for q = 0,
the scattering amplitude is dominated by b ∼ bc and not by
b = ∞, as opposed to the Coulomb case. This result follows
from the different dimensionalities of the space on which
the scattered particles and exchange graviton live”.

However, we will show that the Born amplitude survives
after summation of the KK excitations of the graviton and
does contribute to the eikonal. In its turn, this means that
long-range forces (Coulomb singularity) still are present in
the scattering of brane particles.

Indeed, for d = 1 the series (19) converges, and it has
a pole t−1 corresponding to the zero massless mode of
the graviton. It would be strange to expect that long-
range forces are present for d = 1, but disappear when
gravity lives in more than one extra dimension. For d �
2, the sum (19) is divergent, and it needs regularization.
Following [12], we will use the dimensional regularization,
by considering d to be non-integer at the intermediate steps
of our calculations. The final result will be well defined for
all d � 0.

Although the change “summation in n” → “integration
in dn” (where n labels the KK excitation level of the gravi-
ton) is justified at Rc

√|t| � 1, it should be done more
accurately than it was dealt with in (7) and (20). The cru-
cial point is that a contribution from the zero (massless)
graviton mode must be isolated before the replacement (20):

AB(s, t) =
GNs2

−t
+ GNs2

∑
n2

1+...+n2
d�1

1
−t + m2

n

. (27)

In the case of large extra dimensions, when the mass
splitting is small (∆m = 1/Rc), we can write

∑
n2

1+...+n2
d�1

1
−t + m2

n

→ Rd
c

∫
ddΩ

∞∫
R−1

c

dm md−1 1
−t + m2 .

(28)
Then (27) can be recast as follows:

AB(s, t) =
GNs2

−t

×


1 +

(√
|t|Rc

)d 2πd/2

Γ (d/2)

∞∫
(√

|t|Rc

)−1

dyyd−1 1
1 + y2




≡ AB
0 (s, t) + AB

mass(s, t) . (29)

Strictly speaking, the inequality
√|t|Rc � 1 must be

satisfied in (28). The physically interesting region is |t| �
0.01 GeV2. From (2) one can show that R−2

c is equal to
0.2 · 10−24 GeV2, 0.6 · 10−9 GeV2, and 0.9 · 10−6 GeV2 for
d = 2, d = 4, and d = 6, respectively. Thus, AB

mass(s, t)
approximates well the Born amplitude at |t| � 0.01 GeV2

and d � 6, while AB
0 (s, t) gives the correct singularity at

t ≈ 0.
The integral in the RHS of (29), representing the con-

tribution from the massive gravitons, can be calculated and
rewritten in the form

AB
mass(s, t) (30)

=
GNs2

−t

(√
|t|Rc

)d 2πd/2

Γ (d/2)

∞∫
(√

|t|Rc

)−1

dyyd−1 1
1 + y2

= GNs2R2
c

πd/2

Γ (d/2)(1 − d/2) 2F1

(
1, 1 − d

2
; 2 − d

2
; tR2

c

)
,

where 2F1 (α1, α2; β1; z) is the hypergeometric function
[16], and we have taken into account the relation

Rc =
1

MD

(
MPl

MD

)2/d

=
(

GD

GN

)1/d

. (31)

Thus, AB
mass(s, t) converges at t → 0.

We see from (30) that AB
mass(s, t) = 0 for d = 0. In such

a case, it is the four-dimensional massless graviton that
contributes to AB(s, t), see (29), as it should.

In order to get the asymptotics of the Born amplitude
at large t, we use the equivalent expression for AB

mass(s, t):

AB
mass(s, t) (32)

=
GNs2

−t
πd/2

[
Γ (1 − d/2)

(−tR2
c
)d/2

− 1
Γ (1 + d/2) 2F1

(
1,

d

2
; 1 +

d

2
;

1
tR2

c

)]
.
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As it follows from (32), the large t behavior of AB
mass(s, t)

is similar to that of AB
GRW(s, t), see (21):

AB
mass(s, t)

∣∣∣
R2

c |t|�1

� πd/2Γ (1 − d/2)
(

s

M2
D

)2( −t

M2
D

)d/2−1

(33)

×
[
1 − 1

Γ (1 + d/2)Γ (1 − d/2)
(−tR2

c)
−d/2

]
.

It is convenient to divide the “massive” part of the
eikonal,

χmass(b) =
1
2s

∫
d2q⊥
(2π)2

eiq⊥b⊥ AB
mass(s, t) (34)

=
1

4πs

∞∫
0

q⊥dq⊥J0(bq⊥)AB
mass(s,−q2

⊥) ,

into two parts:

χmass ≡ χ(1)
mass(b) + χ(2)

mass(b) . (35)

Here χ
(1)
mass(b) ≡ χGRW(b), see (24), and

χ(2)
mass(b) = −GNs

πd/2−1

8Γ (1 + d/2)
I(b) , (36)

where I(b) is given by the integral

I(b) =

∞∫
0

dx

x
J0

(
b

Rc
√

x

)
2F1

(
1,

d

2
; 1 +

d

2
; −x

)
. (37)

The integral in (37) cannot be directly expressed in terms
of algebraic or special functions. But we will be able to
calculate its behavior in impact parameter at both large
and small b, if we define I(b) as the limit

I(b) = lim
ε→0

Iε(b), (38)

where we have introduced

Iε(b) =

∞∫
0

dxx−1+εJ0

(
b

Rc
√

x

)
2F1

(
1,

d

2
; 1 +

d

2
; −x

)
.

(39)
The integral in (39) is well defined at −3/4 < Re ε <
1, Re d/2 (we assume that Re d > 0). Thus, the limit
limε→0 Iε exists. Moreover, Iε is a table integral (see formula
2.21.4.6 from [17]):

Iε(b) =
1
ε

Γ (1 − ε)
Γ (1 + ε)

(40)

×
[
−
(

b2

4R2
c

)ε

2F3

(
d

2
, 1; 1 +

d

2
, 1 + ε, 1 + ε;

b2

4R2
c

)

+
d

d − 2ε
Γ 2(1 + ε)1F2

(
d

2
− ε; 1 +

d

2
− ε, 1;

b2

4R2
c

)]
,

where pFq (α1, . . . αp; β1, . . . βq; z) is the generalized hy-
pergeometric function [16].

At b � Rc, we immediately get from (38) and (40)
(d > 0)

I(b)
∣∣∣
b�Rc

� lim
ε→0

1
ε

{
−
(

b2

4R2
c

)ε
[
1 +

1
1 + ε

d

d + 2

(
b

2Rc

)2
]

+
d

d − 2ε
Γ 2(1 + ε)

}
(41)

= 2

{
ln
(

2Rc

b

)[
1 +

d

d + 2

(
b

2Rc

)2
]

+
1
d

+ Ψ(1)

}
.

The region b � Rc is much more difficult to analyze.
The asymptotics of I(b) is calculated in the appendix and
the result is

I(b)
∣∣∣
b�Rc

�
(

2Rc

b

)d
Γ (1 + d/2)
Γ (1 − d/2)

× lim
ε→0

1
ε

[
− Γ (1 − d/2)

Γ (1 − d/2 + ε)
+

Γ (d/2 − ε)
Γ (d/2)

]

=
(

2Rc

b

)d

Γ

(
d

2

)
Γ

(
1 +

d

2

)
cos

πd

2
. (42)

From (29), (35) and (36) it follows that

χ(b) = χ0(b) + χmass(b) , (43)

where

χ0(b) =
1

4πs

∞∫
0

q⊥dq⊥J0(bq⊥)AB
0 (s,−q2

⊥) (44)

and

χmass(b) =
(

bc

b

)d

− GNs
πd/2−1

8Γ (1 + d/2)
I(b) . (45)

The asymptotics of I(b) at small and large b are calcu-
lated above (see (41) and (42)). The zero mode graviton
contribution to the Born amplitude is

AB
0 (s, t) =

GNs2

−t
. (46)

Correspondingly, the eikonal amplitude is represented by
the expression

Aeik(s, t) = −4πis

∞∫
0

b dbJ0(b
√−t)

[
ei(χ0(b)+χmass(b)) − 1

]
.

(47)
The massless graviton contribution to the eikonal (44)

is divergent due to the Coulomb-like pole in t (46). In order
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to regularize it, let us assume that the colliding particles
are confined to a (4 + δ)-dimensional brane with δ > 0,
while gravity propagates in (4 + δ + d) dimensions. Then,
instead of (44) we will have

χ0(b, δ) =
1
2s

∫
d2+δq⊥
(2π)2+δ

eibq⊥AB
0 (s,−q2

⊥, δ) , (48)

where AB
0 (s, t, δ) = G4+δs

2/|t| and G4+δ is a gravita-
tional constant in (4 + δ) dimensions. The “massive” part
of the eikonal, χmass(b, δ), is analogously determined via
Amass(s, t, δ).

We define the (eikonal) amplitude of the scattering in
four dimensions as the limit

Aeik(s, t) = lim
δ→0

Aeik(s, t, δ) , (49)

where the eikonal amplitude,

Aeik(s, t, δ) = −2is
∫

d2+δb eibq⊥
[
ei(χ0(b,δ)+χmass(b,δ)) − 1

]
,

(50)
can be rewritten by adding and subtracting the “mass-
less” term:

Aeik(s, t, δ) = −2is
∫

d2+δb eibq⊥ eiχ0(b,δ)
[
eiχmass(b,δ) − 1

]

− 2is
∫

d2+δb eibq⊥
[
eiχ0(b,δ) − 1

]
. (51)

It is easy to check that χmass(t, δ) is non-singular at
δ = 0. As for χ0(t, δ), at small δ we get from (48)

χ0(b, δ)
∣∣∣
δ→0

=
GNs

4π

[
1
δ

− ln(bMPl) + O(δ)
]

. (52)

The first integral in the RHS of (51) converges at b = 0
(χmass(b) ∼ Ab−d + B ln(1/b), if b → 0), and it is well
defined at b = ∞, if d > 2 (χmass(b) ∼ Cb−d, if b → ∞).

The second integral in the RHS of (51) is well known.
Let us put

1
δ

= ln
(

MPl

µIR

)
, (53)

where µIR is an infrared regulator at δ → 0. Then this
integral is given by the expression for Aeik

HVV(s, t) (16) with
the replacement αG → αG/8π (or, equivalently, GN →
GN/8π; see our remarks after formula (19)). As a result,
we obtain

Aeik(s, t) =
(

4µ2
IR

−t

)−iαG(s)/8π

×

AB

0 (s, t)
Γ (1 − iαG(s)/8π)
Γ (1 + iαG(s)/8π)

−4πi
s

−t

∞∫
0

dx x
(x

2

)−iαG(s)/4π
(54)

× J0(x)

[
exp

(
iχmass

(
x√|t|

))
− 1

]
 .

Here χmass(b) is defined by formula (45) and AB
0 (s, t) is the

singular part of the Born amplitude (46).
It follows directly from (34) and (30) that

χmass(b)
∣∣∣
d→0

→ 0 . (55)

As can be seen from (26), (36) and (41), the small b behavior
of χmass(b) is consistent with (55). Large b asymptotics of
χmass(b) also obeys this limit (see (59)). Thus, by taking
the limit d → 0 in (54), we reproduce the well-known four-
dimensional result (16) derived in [5, 6].

Introducing a four-dimensional phase

φ4 =
GNs

8π
ln
( −t

4µ2
IR

)
, (56)

we get our final result :

Aeik(s, t) = s eiφ4


GNs

−t

Γ (1 − iGNs/8π)
Γ (1 + iGNs/8π))

− 16πi R2
c(Rc

√
|t|)−iGNs/4π (57)

×
∞∫
0

dz z1−iGNs/4πJ0(2Rc
√

|t| z)
[
eiχmass(z) − 1

]
 ,

with

χmass(z)
∣∣∣
z�1

� GNs
πd/2−1Γ (d/2)

8
z−d

− GNs
πd/2−1

4Γ (1 + d/2)

×
{

ln
(

1
z

) [
1 +

d

d + 2
z2
]

+
1
d

+ Ψ(1)
}

(58)

and

χmass(z)
∣∣∣
z�1

= GNs
πd/2−1Γ (d/2)

4
z−d sin2

(
πd

4

)
. (59)

We have introduced the dimensionless variable z = b/2Rc.
The amplitude Aeik(s, t) is well defined for all d � 0. Note
that the asymptotic behavior of χ(b) (59) differs from the
corresponding asymptotics of χGRW, see (24), by a factor
2 sin2(πd/4).

Our expression (57) has an infinite phase (56). It was
shownmany years ago [18] that in quantumgravity each dif-
ferent particle pair in the initial (or final) state contributes
a divergent phase factor to the S-matrix.

Note that the second term in (57) is regular at t = 0.
Thus, for small t (namely, at |t|R2

c � 1) the main contri-
bution to the eikonal amplitude comes from the Born pole
(the first term in (57)). It is interesting that this term does
not depend on the compactification radius R2

c nor on the
number of extra dimensions d. In other words, it is entirely
four-dimensional.

The large t behavior is determined by small values of
the variable z in the integral (57). Taking into account the
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asymptotics of χmass(z) at z ≈ 0 (58), one can obtain by
using the stationary-phase technique (d > 0)

Aeik(s, t)
∣∣∣
|t|R2

c�1
� −4πis eiφ4

1
|t|

2iGNs/4π
√

1 + d

×
[(

d
(
bc
√

|t|
)d
)1/(d+1)

]1−iGNs/4π

× exp


i(1 + d)

(
bc
√|t|
d

)d/(d+1)

 . (60)

Formula (57) has the correct physical limits. In the
case when the compactification radius Rc tends to zero
and, consequently, the KK graviton excitations become
very heavy (mn → ∞; see (3)) and decouple from the
brane particles, they make no contribution to the amplitude
(since χmass → 0), but a renormalized Born amplitude still
is present in (57). The same is true for d → 0 (no extra
dimensions and, consequently, no massive gravitons are
present in nature).

On the other hand, the expression for Aeik
GRW(s, t) ob-

tained in [12] (see formulae (22), (24) and (25)), results in
Aeik

GRW(s, t) = 0 in the limit Rc → 0.

4 Discussion

In the present paper the eikonal scattering amplitude of
two brane particles, interacting by gravity forces, is cal-
culated in the ADD model. To go beyond the approxi-
mation of effectively infinite Rc, used in other papers, we
pay particular attention to the account of the contribution
from the massless graviton mode. We have shown that the
brane amplitude, Aeik, has both “massless” (Coulomb) and
“massive” terms. Our main result is formula (57), where
χmass(b) represents the contribution from the KK graviton
modes with n � 1. The expression for χmass(b) and its
asymptotic behavior are presented in (45), (37) and (58),
and (59), respectively. Our formula (57) gives the correct
four-dimensional result at both D → 4 and Rc → 0.

It is interesting to compare our results with those de-
scribing a collision of two bulk particles in D dimensions
with D > 4. First of all, χeik

ACV has an imaginary part, while
our χeik does not. The imaginary part appears in χeik, when
one sums multiple exchange of reggeized gravitons [4, 9].

The asymptotics of our eikonal at large impact param-
eter (59) coincides with the real part of χeik

ACV (11), up to a
constant depending on the number of the extra dimensions.

The D-dimensional eikonal amplitude, Aeik
ACV, see (12),

has the non-renormalized Born pole at t = 0. In the
brane amplitude (57) the renormalized Born pole is re-
produced. This singular part makes a leading contribution
at small momentum transfers, and it coincides with the
D-dimensional amplitude taken at D → 4.

The presence of the compact extra dimensions does not
influence the small t behavior of the scattering amplitude, if
a collision takes place on the (1+3)-dimensional brane. This

is easy to understand, since, from the point of view of four
dimensions, the higher space dimensions supply us with the
KK tower of massive exchange quanta (in our case, massive
gravitons). These new massive quanta cannot hide the long-
range forces originating from the massless graviton.

Thus, accounting for the contributions of the massive
gravitons results in an additive term, which is important
at large and intermediate t (60). Note that the eikonal
depends, in general, on the ratio b/2Rc (it is of the form
χ(b) ∼ (bc/b)d only at b → 0, ∞). Therefore, the relevant
dimensionless parameters for the amplitude are GNs and
R2

c |t| (but not b2
c |t|). Recall that in flat (4 + d) dimensions

the eikonal amplitude is given in terms of the dimensional
parameter GDs|t|d/2 (see the formulae in Sect. 2).
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Appendix

In this appendix we will calculate the asymptotics of the
RHS of (40) at large values of b/2Rc. The quantity under
consideration, I(b), is represented in terms of the gen-
eralized hypergeometric functions, 1F2 (α1; β1, β2; z) and
2F3 (α1, α2; β1, β2, β3; z); see (38) and (40). Let us intro-
duce the notation

pFq

(
αp

βq

∣∣∣∣ z
)

≡ pFq (α1, . . . αp; β1, . . . βq; z) ; (A.1)

Γ (αp) ≡ Γ (α1)Γ (α2) . . . Γ (αp) . (A.2)

Sometimes we will write simply pFq(z).
To solve the problem, we need to use the full asymptotic

expansion of pFp+1(z) at large z [19]:

pFp+1

(
αp

βp+1

∣∣∣∣ z2

4

)
� Γ (βp+1)

Γ (αp)

{{
Kp,p+1

[(
1
2
z

)2
]

+ Kp,p+1

[(
1
2
zeiπ
)2
]

+ Lp,p+1

[(
1
2
zeiπ
)2
]}

;(A.3)

|z| → ∞, arg z = 0. Let us recall that z = b/Rc > 0 and
p = 1, 2 in our case. The function Kp,p+1(z) in (A.3) is
given by the series in inverse powers of the variable z [19]:

Kp,p+1

[(
1
2
z

)2
]

=
1

22γ+1
√

π
ezz2γ

∞∑
k=0

dkz−k , d0 = 1 ,

(A.4)
with

γ =
1
2

(
1
2

+
p∑

n=1

αn −
p+1∑
n=1

βn

)
. (A.5)

Thus, Kp,p+1(z) increases exponentially in z at z → +∞,
which can result in an exponential rise of Iε (40) in the
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impact parameter b. However, we will show now that this
is not the case due to a complete cancellation of terms,
proportional to K1,2(z) and zεK2,3(z) in (40).

Let us note first that γ = −3/4 and γ = −3/4 − ε,
respectively, for 1F2 (d/2 − ε; 1 + d/2 − ε, 1; z) and
2F3 (d/2, 1; 1 + d/2, 1 + ε, 1 + ε; z). For p = 1, the coef-
ficients dk in (A.4) obey the recursion formulae [19]

2(k + 1) d
(p=1)
k+1

=
[
3k2 + 2k(1 + C1 − 3B1) + 4D1

]
d
(p=1)
k

−(k − 2γ − 1)(k − 2γ + 1 − 2β1)

×(k − 2γ + 1 − 2β2)d
(p=1)
k−1

= Ã
(p=1)
k d

(p=1)
k + Ã

(p=1)
k−1 d

(p=1)
k−1 , (A.6)

where we have introduced the notation

B1 =
p∑

n=1

αn , C1 =
p+1∑
n=1

βn , (A.7)

B2 =
p∑

n=2

n−1∑
m=1

αnαm , C2 =
p+1∑
n=2

n−1∑
m=1

βnβm , (A.8)

D1 = C2 − B2 +
1
4
(B1 − C1)(3B1 + C1 − 2) − 3

16
. (A.9)

For p = 2, the recursion relations look like [19]

2(k + 1) d
(p=2)
k+1

=
[
5k2 + 2k(3 + B1 − 3C1 − 10γ) + 4D1

]
d
(p=2)
k

−[4k3 − 6k2(C1 + 4γ)

+2k(24γ2 + 12γC1 + C1 + 4C2 − 1)

−32γ3 − 24γ2C1 − 4γ(C1 + 4C2 − 1)

+2C1 − 4C2 − 8C3 − 1]d(p=2)
k−1

+(k − 2γ − 2)(k − 2γ − 2β1) (A.10)

×(k − 2γ − 2β2)(k − 2γ − 2β3) d
(p=2)
k−2

= A
(p=2)
k d

(p=2)
k + A

(p=2)
k−1 d

(p=2)
k−1 + A

(p=2)
k−2 d

(p=2)
k−2 ,

where
C3 = β1β2β3 , (A.11)

and the other quantities are defined as before; see (A.7)–
(A.9).

By making the replacement k → k − 1 in (A.6), we get

2k d
(p=1)
k (A.12)

=
[
3(k − 1)2 + 2(k − 1)(1 + C1 − 3B1) + 4D1

]
d
(p=1)
k−1

−(k − 2γ − 2)(k − 2γ − 2β1)(k − 2γ − 2β2)d
(p=1)
k−2 .

Let us now rewrite (A.6) in the form

2(k + 1) d
(p=1)
k+1 =

[
Ã

(p=1)
k − A

(p=2)
k

]
d
(p=1)
k (A.13)

+ A
(p=2)
k d

(p=1)
k + Ã

(p=1)
k−1 d

(p=1)
k−1 ,

and substitute d
(p=1)
k from (A.12) into the first term in the

RHS of (A.13). Then we obtain

2(k+1)d(p=1)
k+1 =A

(p=1)
k d

(p=1)
k +A

(p=1)
k−1 d

(p=1)
k−1 +A

(p=1)
k−2 d

(p=1)
k−2 .

(A.14)
By direct calculations one can check that A

(p=1)
i = A

(p=2)
i ,

namely

A
(p=1)
k = A

(p=2)
k

= 5k2 + k(5 − 2n + 8ε) +
13
4

− 2n + 4ε ,

A
(p=1)
k−1 = A

(p=2)
k−1

= −4k3 + 3k2(n − 4ε) + k(−1 + 4nε − 8ε2)

+
1
4
(n − 4ε) ,

A
(p=1)
k−2 = A

(p=2)
k−2

=
1
16

(2k − 1)2(2k − 1 + 4ε)

×(2k − 1 − 2n + 4ε) . (A.15)

In other words, we have shown that d
(p=1)
k and d

(p=2)
k obey

the same recursion formulae, and d
(p=1)
k = d

(p=2)
k for all k

in the series (A.4).
Therefore, the K-functions do not contribute to the

expansion (A.3) in our case, and we have

Iε(b) =
d

2ε
Γ (1 + ε)Γ (1 + ε)

×
[
−
(

b2

4R2
c

)ε

L2,3

(
d/2, 1

1 + d/2, 1 + ε, 1 + ε

∣∣∣∣ b2

4R2
c

)

+L1,2

(
d/2 − ε

1 + d/2 − ε, , 1

∣∣∣∣ b2

4R2
c

)]
. (A.16)

Note that the L-function is related to the Meijer G-func-
tion [19]:

Lp,p+1

(
α1, . . . αp

β1, . . . βp+1

∣∣∣∣ z
)

= Gp, 1
p+2, p

(
1
z

∣∣∣∣1, β1, . . . βp+1

α1, . . . αp

)
. (A.17)

In its turn, the G-function can be represented as a series in
generalized hypergeometric functions of an inverse power
of z [16]:

Lp,p+1(z) =
p∑

n=1

L
(n)
p,p+1(z) , (A.18)

where

L
(n)
p,p+1(z) = z−αn

Γ (αn)Γ (αp − αn)∗

Γ (βp+1 − αn)
(A.19)

× p+2Fp−1

(
αn, 1 + αn − βp+1

1 + αn − α∗
p

∣∣∣∣∣− 1
z

)
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(the superscript ∗ means that the term with αn = αp is
not included in the product of Γ -functions).

As a result, we arrive at the expression for Iε, which is
convenient for analyzing its large b behavior:

Iε(b) =
1
ε

Γ (1 − ε)Γ (1 + ε)Γ (1 + d/2)

×
{

−
(

b2

4R2
c

)ε−1
Γ (d/2 − 1)

Γ 2(ε)Γ 2(d/2)

×4F1

(
1, 1 − d

2
, 1 − ε, 1 − ε; 2 − d

2
; −4R2

c

b2

)

+
(

b2

4R2
c

)ε−d/2 1
Γ (1 − d/2 + ε)

(A.20)

×
[
− Γ (1 − d/2)

Γ (1 − d/2 + ε)
+

Γ (d/2 − ε)
Γ (d/2)

]}
.

Up to now, we did not consider the parameter ε to be small.
Finally, the desired asymptotics looks like

I(b)
∣∣∣
b�Rc

= lim
ε→0

Iε

∣∣∣
b�Rc

=
(

2Rc

b

)d
Γ (1 + d/2)
Γ (1 − d/2)

(A.21)

× lim
ε→0

1
ε

[
− Γ (1 − d/2)

Γ (1 − d/2 + ε)
+

Γ (d/2 − ε)
Γ (d/2)

]
.

By expanding the RHS of equality (A.21) in ε and taking
the limit ε → 0, we derive the asymptotic formula for I(b)
presented in the text; see (42).
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